Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis.

نویسندگان

  • I Schwarte-Waldhoff
  • O V Volpert
  • N P Bouck
  • B Sipos
  • S A Hahn
  • S Klein-Scory
  • J Lüttges
  • G Klöppel
  • U Graeven
  • C Eilert-Micus
  • A Hintelmann
  • W Schmiegel
چکیده

Smad4/DPC4 (deleted in pancreatic carcinoma, locus 4) is a tumor suppressor gene lost at high frequency in cancers of the pancreas and other gastrointestinal organs. Smad4 encodes a key intracellular messenger in the transforming growth factor beta (TGF-beta) signaling cascade. TGF-beta is a potent inhibitor of the growth of epithelial cells; thus, it has been assumed that loss of Smad4 during tumor progression relieves this inhibition. Herein, we show that restoration of Smad4 to human pancreatic carcinoma cells suppressed tumor formation in vivo, yet it did not restore sensitivity to TGF-beta. Rather, Smad4 restoration influenced angiogenesis, decreasing expression of vascular endothelial growth factor and increasing expression of thrombospondin-1. In contrast to the parental cell line and to control transfectants that produced rapidly growing tumors in vivo, Smad4 revertants induced small nonprogressive tumors with reduced vascular density. These data define the control of an angiogenic switch as an alternative, previously unknown mechanism of tumor suppression for Smad4 and identify the angiogenic mediators vascular endothelial growth factor and thrombospondin-1 as key target genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Tumorigenesis and Induction of p15 by Smad4/DPC4 in Human Pancreatic Cancer Cells

Purpose: The tumor suppressor gene Smad4/DPC4, a key transcription factor in transforming growth factor (TGF) signaling cascades, is inactivated in 50% of pancreatic adenocarcinomas. We seek to determine the role of Smad4/DPC4 in the suppression of tumor cell growth and in the regulation of TGF-mediated expression of cell-cycle regulatory genes p15 and p21. Experimental Design: Smad4/DPC4 is ov...

متن کامل

Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells.

PURPOSE The tumor suppressor gene Smad4/DPC4, a key transcription factorin transforming growth factor beta (TGF-beta) signaling cascades,is inactivated in 50% of pancreatic adenocarcinomas. We seek to determine the role of Smad4/DPC4 in the suppression of tumor cell growth and in the regulation of TGF-beta-mediated expression of cell-cycle regulatory genes p15(ink4b) and p21(waf1). EXPERIMENT...

متن کامل

Dpc4 transcriptional activation and dysfunction in cancer cells.

Dpc4 (Smad4) is implicated in mediation of signals from transforming growth factor (TGF) beta and related ligands, and wild-type Dpc4 mediates TGF-beta-stimulated gene transcription at specific DNA sequences bound by Dpc4 [Smad binding element (SBE)]. We characterized panels of DPC4 tumor mutations and cancer cell lines. Amino acid substitutions within the NH2-terminal third of Dpc4 weakened or...

متن کامل

Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4.

Homologs of Drosophila Mad function as downstream mediators of the receptors for transforming growth factor beta (TGF-beta)-related factors. Two homologs, the receptor-associated Smad3 and the tumor suppressor Smad4/DPC4, synergize to induce ligand-independent TGF-beta activities and are essential mediators of the natural TGF-beta response. We now show that Smad3 and Smad4 associate in homomeri...

متن کامل

Effects of Enoxaparin Emulsion on Dimethylbenzanthracene-induced Breast Cancer in Female Rats

Background : Enoxaparin is an anticoagulant medication. Anticoagulation inhibits tumor cell–mediated release of angiogenic proteins and diminishes angiogenic response. Angiogenesis is an important event in various cancers such as breast cancer. Angiogenesis provide oxygen and nutrients to tumor cells and causes tumor progression. The aim of the present study was to evaluate the anti-angio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 17  شماره 

صفحات  -

تاریخ انتشار 2000